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Many problems in nano and molecular electronics require the solution of the Schrodinger equation for
scattering states. R-matrix theory, a technique first introduced in nuclear physics and widely used in atomic and
molecular physics, has recently been adapted to calculate the transport properties of solid-state devices. We
have extended R-matrix theory to the general case of two-dimensional devices in the presence of an external
perpendicular magnetic field. We apply this technique to a particular device and calculate the magnetotransport
properties of a two-dimensional “cross” junction.
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I. INTRODUCTION

Modern experiments can fabricate semiconductor devices
so small that the electron motion is two dimensional �2D�
and the electron mean free path is larger than the device size.
The electron transport in these devices has been of great
interest both theoretically1 and experimentally for several
years. Studies of magnetotransport have led to fundamental
advances such as the discovery of the quantum Hall effect,2

to applied devices such as magnetic field sensors, and spin-
based devices.3

Recent experiments in InSb four-terminal devices4 have
observed a significant bend resistance, RB. In bend-resistance
experiments �Fig. 1�, a current I14 is injected in lead 4 and
removed from lead 1. If the electrons travel ballistically, they
will overshoot lead 1 and travel to lead 3 until sufficient
charge accumulates to deflect current to lead 4. This pro-
duces a negative voltage between leads 2 and 3. The ratio
between this voltage V23 and I14 defines the bend resistance
RB�V23/ I14, which is also negative. When a magnetic field
B is applied perpendicular to the device, charge is deflected
into lead 2 decreasing V23. The bend resistance therefore
decreases as a function of the applied magnetic field.

Similar experiments on GaAs devices have been ex-
plained using a semiclassical billiard ball model.5 However
the effective mass in InSb is very small �m*=0.0139m0�, and
experimental features may contain few transverse quantum
states below the Fermi energy. InSb devices also display bal-
listic transport at relatively high temperatures.7 Thus it is
more reasonable to model this experiment using quantum
mechanics and the Landauer-Buttiker formula.8 The
Landauer-Buttiker �LB� formula states that the transport
properties of a quantum-mechanical device can be obtained
from the transmission coefficients of charge carriers in the
device. In particular, the bend resistance can be obtained
by6,9,10

RB =
h

2e2

T41T21 − T31
2

S
, �1�

where S is given by

S = �T21 + T41���T21 + T31�2 + �T41 + T31�2� . �2�

In the above equations, Tij is the transmission coefficient of
electrons in the lead i when the electron is injected from the

lead j. Therefore we need to calculate the transmission coef-
ficients of electrons in the device if we want to analyze the
device quantum mechanically.

A technique like a Green’s-function method can calculate
the transmission coefficients of electrons in a device with a
simpler geometry, however when the geometry becomes
complicated, it is hard to use such techniques.

In this article, we discuss R-matrix theory, a method to
calculate the transmission coefficients of electrons in a de-
vice with a complicated geometry. R-matrix theory �RMT�
was originated in studies of nuclear reactions in which the
scattering regions have a spherical geometry.11 Elsewhere,12

we discuss the extension of RMT for two-dimensional de-
vices. Here we present the extension of RMT to calculate the
transmissioncoefficients of a two-dimensional device in the
presence of an external perpendicular magnetic field. Even
though the device made by Goel et al. has a complicated
geometry, we focus only on a four-terminal “cross”-junction
device in order to develop the general formalism of device
R-matrix theory in an external magnetic field.

In Sec. II below we set up the problem to be solved and
define our notation. We then discuss the problem in three
steps: we first construct the lead solutions �Sec. II A�, then
the interior region solutions �Sec. II B� and in Sec. II C we
put these two solutions together to formulate the equations,

FIG. 1. A schematic of a device used in a negative bend-
resistance experiment. The current is injected from lead 4 and re-
moved from lead 1. This produces a voltage between the leads 2
and 3, V23, that is measured as a function of the applied perpendicu-
lar magnetic field B. The dotted lines indicate “soft boundaries,”
mathematical surfaces that serve to separate the interior region from
the leads in order to facilitate the solution.
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which can be solved for the transmission coefficients of elec-
trons in the leads. As an application, in Sec. III A, we use the
magnetic-field RMT to calculate the transmission coeffi-
cients in a two-dimensional four-terminal “cross”-junction
device �Fig. 1� and in Sec. III B we use these transmission
coefficients to calculate the magnetotransport properties of
the device. We conclude with a summary. The appendix re-
views standard R-matrix theory for the field-free case.

II. SETTING UP THE PROBLEM

In order to calculate the magnetotransport properties of
the electrons in the device �Fig. 1�, we need to calculate the
transmission coefficients of electrons in the device. In this
model, we assume that the electron transport is ballistic and
we model the transport by a single-electron picture. We start
with the time-independent Schrodinger equation for an elec-
tron in an applied perpendicular magnetic field,

Ĥ��E,p0,np0
� = E��E,p0,np0

� , �3�

where ��E,p0,np0
� is the scattering wave function. The sub-

script E is the total energy and np0
denotes the quantum

number of the incoming electron in the lead p0; no other

incoming channel is occupied. The Hamiltonian Ĥ is given
by

Ĥ =
1

2m* �P� − eA� �2 + V�r�� , �4�

where A� is the vector potential. We have chosen V�r��=0
inside the device, although this is not essential to the
R-matrix formalism.

We will first make the Hamiltonian dimensionless. We
measure the lengths in terms of a characteristic length in the
device �typically we choose wp0

, the width of the input lead�,
and energies in terms of E0=�2 /m*wp0

2 and define �=E /E0

and lB
2 = � /eB. This new quantity lB has the units of length

and is called the “magnetic length.” It is the average radius
of the lowest Landau level of the system. Finally, we define
the dimensionless magnetic field, B=wp0

2 / lB
2 so that the

Schrodinger equation becomes

�−
1

2
	 �2

�x2 +
�2

�y2
 + iB	Ax
�

�x
+ Ay

�

�y

 +

B2

2
�Ax

2 + Ay
2��

����,p0,np0
� = ����,p0,np0

� , �5�

where x and y are the dimensionless coordinates and A� is the
dimensionless vector potential. In the symmetric gauge, we

have A� symm= �−y /2 ,x /2 ,0� and in the asymmetric gauge,

A� asymm= �−y ,0 ,0�. While both gauges produce the same
magnetic field, the choice of gauge is important when we
solve the problem approximately. We have to choose the
gauge such that the solution will satisfy the boundary condi-
tions of the system. An appropriate choice of gauge will
achieve faster convergence of the results. Since the eigen-
states in any gauge form a complete basis set, we are free to

choose whichever basis set is more convenient when expand-
ing the final scattering wave function. We do not examine
multiply connected structures and thus do not enforce any
global phase relationships.

We use R-matrix theory to solve this equation for a given
system. The idea of R-matrix theory is to solve for the coef-
ficients of electrons without solving for the total scattering-
wave function ���,p0,np0

�. We first divide the system into two

parts: the interior scattering region, and the exterior leads
�see Fig. 1� and solve the Schrodinger equation in each re-
gion. Next, we match the solutions in the two types of re-
gions on the soft boundaries, S �where the interior region
meets the leads� to solve for the transmission coefficients
using the R matrix.

A. Lead solutions

In the present application, we assume that the leads have
a Cartesian symmetry and we use the same notation as in
zero-field RMT �Appendix �. In the absence of a magnetic
field, the lead eigenfunctions take the form of sine functions
with a wave vector proportional to ��−�p,np

�1/2 where � is the
total energy, �p,np

is the subband energy of the npth quantum
channel of the pth lead. However, the applied magnetic field
breaks the reflection symmetry and the eigenfunctions are no
longer sine functions.

We define in each lead a coordinate system �xp ,yp� where
yp is the transverse and xp is the longitudinal �positive, out-
going� coordinate �Fig. 2�. For that coordinate system we
write the gauge in asymmetric form, since this admits solu-
tions in the form of a traveling wave in the longitudinal
direction.13 Although the lead eigenfunctions are still ana-
lytic for a nonzero magnetic field these forms involve special
functions that complicate the calculation. Therefore we seek
a numeric solution for them.14

We seek a solution of the form

�np

p �xp,yp� = eikp,np
xpfp,np

�yp� . �6�

Tamura and Ando show14 how to calculate the expansion
coefficients Cnp,mp

p such that,

FIG. 2. A detailed schematic diagram of a four-terminal “cross”-
junction device. A local coordinate system is defined to each lead
�xq ,yq� and the interior region �x ,y�. For each lead, xq is the longi-
tudinal coordinate and yq is the transverse coordinate. We set the
lead coordinate systems such that xq=0 where lead meets the inte-
rior region.
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fp,np
�yp� = �

mp

�

Cnp,mp

p �p,mp
�yp� , �7�

where �p,mp
�yp� are the transverse wave function of electrons

in the lead when there is no magnetic field. This gives two
sets of solutions for Eq. �6�; half are left moving and half are
right moving. The wave vector, kp,np

�Eq. �6�� can be real,
imaginary, or complex. The real wave vectors correspond to
current-carrying waves, whereas the complex and imaginary
wave vectors produce evanescent waves. While only the
current-carrying waves have a physical meaning, we need to
include the evanescent waves for the mathematical complete-
ness.

It is important to note that these lead eigenfunctions are
not orthogonal to each other. However they do make a com-
plete set so that we can use them to expand the scattering-
wave function in the pth lead as

��,p0,np0
�xp,yp� = �

np

N

�np,np0

p,p0 eikp,np
xpfp,np

�yp� . �8�

The expansion coefficients �np,np0

p,p0 are the transmission ampli-

tudes of interest. In particular, �np,np0

p,p0 is the transmission am-

plitude of the electron to the npth subband in the pth lead
when the electron is injected from the np0

th subband in the
p0th lead. We use these transmission amplitudes to calculate
the transmission coefficients we describe as follows.

The flux in each outgoing lead can be calculated as15

Jp � ���,p0,np0

* �rp�	− i
d

dxp
− Ax
��,p0,np0

�rp�
�
+ ��,p0,np0

�rp�	i
d

dxp
− Ax
��,p0,np0

* �rp�dyp� , �9�

where rp= �xp ,yp�. Since we have not normalized the eigen-
functions to unit flux, the flux in the pth lead is not given by
�np

��np,np0

p,p0 �2. Once we solve for the �np,np0

p,p0 s we can calculate

the current going through each lead in the device according
to Eq. �9�. Even though we use N subbands in the expansion
of Eq. �8�, not all of them are current carrying. We determine
the value of N such that the calculation gives the desired
precision. This number is always larger than the number of
open channels at that energy. However, we use only the open
channels to calculate the flux going through the lead accord-
ing to Eq. �9�. The transmission coefficients from lead q to
lead p are then equal to Jp /Jq.

In order to calculate the flux, we substitute Eq. �8� in Eq.
�9�. One might conclude that due to the nonorthogonality of
the lead eigenfunctions, the cross terms will not cancel out
and we will end up having a position-dependent flux, which
would be puzzling. This problem does not arise however,
since two lead eigenfunctions of the same energy satisfy15

�
−wp/2

wp/2

dypfkp,	p
�yp�fkp,
p

�yp��kp,	p
+ kp,
p

+ 2ypB� = 0.

�10�

Even though the lead eigenfunctions do not obey the stan-
dard orthogonality relation, this relation �Eq. �10�� will can-
cel out the cross terms in the flux calculation.

B. Interior region solution

As Bloch first pointed out,16 the kinetic-energy term in a
Hamiltonian in general is not Hermitian in a finite region
�e.g., our interior region� for arbitrary boundary conditions.
If it is not Hermitian, its eigenfunctions do not make a com-
plete set. He defined the “Bloch Hamiltonian” of a system,
adding a term L to the original Hamiltonian so that the result
is Hermitian in the finite interior region. The scattering-wave
function in the interior region can then be expanded in terms
of the Bloch eigenfunctions �see Appendix�.

First we find the Bloch Hamiltonian corresponding to the
magnetic Hamiltonian �Eq. �4��. The form of the Hamil-
tonian depends on the gauge, so the Bloch term also will be
gauge dependent. We will first discuss the problem for an
arbitrary gauge and then give the form of the Bloch operator
for the symmetric and asymmetric gauges. In the presence of
a magnetic field, the Bloch operator takes the form

ĤB = Ĥ0 + Hmag + L̂1 + L̂2. �11�

Ĥ0 is the magnetic-field independent �i.e., B=0� part of the
Hamiltonian and L1 is the magnetic-field independent Bloch
operator �Appendix� in traditional R-matrix theory. The
magnetic-field dependent part of the Hamiltonian, Hmag, is
given by

Hmag = iBAx
�

�x
+ iBAy

�

�y
+

B2

2
�Ax

2 + Ay
2� . �12�

In order to make this Hermitian we must add to it a second
Bloch operator L2, which we now derive.

The third term in Eq. �12� is just a multiplicative term that
is Hermitian independent of the gauge, thus there is no con-
tribution to the Bloch operator from the third term. We have
to consider the Hermiticity of the first two terms. We will
consider the first term,

ĥ = iBAx
�

�x
. �13�

We add a term L2
x to ĥ such that the operator ĥ+L2

x is Her-
mitian. In order to have the Hermiticity, two eigenfunctions

of the operator ĥ+L2
x, f and g, should satisfy the relation

�f ��ĥ + L̂2
x�g� = ��ĥ + L̂2

x�f �g� . �14�

In order to satisfy the relation we find

L̂2
x = − �

sp

i�B
2

��x − sp�Ax, �15�

where � is positive for the upper integration boundaries and
negative for the lower integration boundaries. Essentially, �
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is the dot product of the outward-going normal to the soft
boundary and the direction of the gradient. Note that the
Bloch operator has a different form compared to the zero-
field Bloch term. In the zero-field expression the Bloch term
is equal to the boundary term, whereas in the magnetic-field
problem, the Bloch-operator term is the half of the boundary
term.

In the same way, we can make the y-dependent part of the
Hamiltonian Hermitian and we get the total magnetic Bloch
term as

L̂2 = − �
sp
x

i�B
2

��x − sp
x�Ax − �

sp
y

i�B
2

��y − sp
y�Ay , �16�

where the first term runs over all the x boundaries and the
second term runs over all the y boundaries. When solving for
the interior region eigenfunctions, we use the symmetric
gauge and the magnetic Bloch term takes the form

L2
sym = �

sp
x

i�B
4

��x − sp
x�y − �

sp
y

i�B
4

��y − sp
y�x . �17�

When solving for the lead eigenfunctions, we use the asym-
metric gauge and the magnetic Bloch term takes the form

L2
asym = �

sp
x

i�B
2

��x − sp
x�y . �18�

The two Bloch terms L1+L2 make HB Hermitian and we
use its eigenfunctions  j to expand the scattering wave func-
tions in the interior region as

���� = �
j

C j� j� . �19�

In the following section we explain how to relate the interior
region solution �Eq. �19�� and the lead solution �Eq. �8�� to
solve for the transmission amplitudes �np,np0

p,p0 .

C. R-matrix formulation

Knowing the lead eigenfunctions and the interior-region
Bloch eigenfunctions, R-matrix theory allows us to formulate
an equation to solve for the unknown scattering amplitudes
in Eq. �8�. Following the zero-field formulation in the Ap-
pendix, we note that our scattering-wave function satisfies
Eq. �3� in all space while our interior Bloch eigenfunctions
satisfy

�Ĥ + L̂1 + L̂2� j = � j j .

Thus, within the interior region and on its boundaries we can
expand the scattering-wave function in terms of the interior
eigenstates. A small amount of algebra then shows that we
can write the scattering-wave function in the qth lead as

���,p0,np0
�xq,yq�� = R��xq,yq;xp,yp�L̂���,p0,np0

�xp,yp�� ,

�20�

where the R matrix is defined in Eq. �A7�. In the presence of
a magnetic field the Bloch operator has two terms that L

=L1+L2. This Eq. �20� is true only inside the interior region
and we use that to write the scattering wave function on the
soft boundaries where the scattering-wave function can also
be expanded in terms of the lead eigenfunctions. The nota-
tion and the procedure remain the same as in the zero-field
RMT, however, extra care has to be taken since the trans-
verse lead eigenfunctions fp,np

�yp� are not orthogonal.
In Eq. �20� the Bloch eigenfunctions  j are eigenfunc-

tions of to the Bloch Hamiltonian with the symmetric gauge
�since we have chosen the symmetric gauge for the interior
region�. However the Bloch operator appears in the right-
hand side of Eq. �20� is L=L1+L2

asym, as we have chosen the
asymmetric gauge for each lead.

Now the scattering-wave function in the interior region
relates to the M matrix as

���,p0,np0
�xq,yq�� = �

nq

�
p

�
np

M��q,nq;p,np���q,nq
�yq��

���p,np
�yp����xp

+ iByp����,p0,np0
�xp,yp�� ,

�21�

where the M matrix is defined in Eq. �A10� and the index p
runs through all the soft boundaries. Since we consider this
equation on the soft boundaries �xq=0�, the scattering wave
function can be written as,

���,p0,np0
�xq,yq�� = �

mq=1

Mq

Cnq,mq

q ��q,mq
�yq���q,p0

e−ikq,nq
xq�nq,np0

+ �
nq=1

Nq

�
mq=1

Mq

Cnq,mq

q eikq,nq
xq��q,mq

�yq���nq,np0

q,p0 .

�22�

Combining Eqs. �21� and �22� gives a set of linear equations
as

Cnq,mq

q �q,p0
�nq,np0

+ �
nq

Cnq,mq

q �nq,np0

q,p0

= �
mp

�
mp�

K1Cnp0
,mp�

p + �
p

�
mp

�
np

�
mp�

K2Cnp,mp�
p

�np,np0

p,p0 ,

�23�

where K1 and K2 are defined as

K1 = M��q,mq,p0,mp��iB�ymp,mp�
� − ikp0,np0

�mp,mp�
� , �24�

and

K2 = M��q,mq,p,mp���iB�ymp,mp�
� + ikp,np

�mp,mp�
� .

In the above equations,

�ymp,mp�
� = ��p,mp

�yp��p,mp�
� . �25�

Note the difference between Eq. �A9� and Eq. �23�. The extra
complexity in the magnetic-field RMT is due to the nonor-
thogonality of the lead eigenfunctions and the additional
term in the Bloch operator. This equation �Eq. �23�� can be
solved for the unknown transmission amplitudes, �nqnp0

q,p0 . We

will calculate the M matrix elements using a variational ba-
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sis set. In order to explain the procedure, we will calculate
the scattering coefficients of a four-terminal “cross” junction.

III. APPLICATIONS: FOUR-TERMINAL “CROSS”
JUNCTION

A. Transmission coefficients

In this section we show how to apply Eq. �23� to calculate
the transmission coefficients for the electrons injected into
the device shown in Fig. 1. In order to ease the explanation,
we draw a detailed diagram of the device as shown in Fig. 2.
This device has a symmetric geometry in that all the leads
are the same in width. However, the technique does not re-
quire such a symmetry in the device.

In order to calculate the transmission coefficients of the
electrons in this system, we need to simultaneously solve the
set of equations given by Eq. �23�, which requires the matrix
elements of M. The M matrix elements are defined by the
interior-region eigenfunctions � j� �Eq. �A10��. We use a
variational basis set to calculate those interior region eigen-
functions. We briefly explain the variational approach
below.17

The interior region eigenfunctions are solutions to the
equation

HB� j� = � j� j� . �26�

We choose the symmetric gauge for the interior region for
which the field-dependent Bloch-Hamiltonian term takes the
form

L2 = −
iyB
4

�	x +
w1

2

 +

iyB
4

�	x −
w1

2

 +

ixB
4

�	y +
w2

2



−
ixB
4

�	y −
w2

2

 . �27�

We use a set of basis functions

��a�x�� =� 1

�x
=� 2

�x
sin

a�

�x
x for a = 1,3, . . .

=� 2

�x
cos

a�

�x
x for a = 2,4, . . .

for x direction and a similar set �b�y� for the basis functions
in the y direction.

Note that, if we set �x=1 and �y =1, these basis functions
make an orthonormal set, which satisfy the logarithmic de-
rivative boundary conditions. However, we choose �x and �y
slightly larger than 1 �e.g., �x=1.3�, which makes this set
nonorthonormal; it is complete inside the interior region.

The importance of using such a variational basis function
is that those basis functions do not have any common bound-
ary conditions �such as zero value or zero derivative� on the
soft boundaries sq. Having different values and different de-
rivatives on the boundaries achieves a faster convergence in
expanding the scattering-wave function ���,p0,np0

� since the

scattering-wave function is not found to obey any particular
condition on these boundaries.

Since the basis set is not orthonormal, we need to solve
the generalized eigenvalue problem to calculate the eigenval-
ues � j and the corresponding eigenvectors � j� with the ex-
pansion coefficients which are defined as,

�n,m�x,y�� = �
a,b

dn,m,a,b��a�x����b�y�� . �28�

We calculate the M matrix elements and then solve the lin-
ear algebra equations �Eq. �23�� to find the scattering ampli-
tudes �nq,np0

q,p0 . In the interior region calculation, we use 100

basis functions to diagonalize the Bloch Hamiltonian �ob-
tained from a product of 10 basis functions in the y-direction
and 10 in the x-direction�. We use the same number of basis
functions, ten basis functions to expand the lead eigenfunc-
tions. This makes sure that we have enough basis functions.
However, we have not optimized the code to use the least
required number of evanescent functions. Once we know the
scattering amplitudes �nq,np0

q,p0 , we can calculate the transmis-

sion coefficients in each lead as we explained in Sec. II A.
The graph �Fig. 3� shows the transmission coefficients of

the electrons in the four-terminal square-junction device for
different values of magnetic fields. The plotted values are the
lead to lead transmission coefficients, Tqp0

=�nq,np0
Tnq,np0

q,p0 ,

where Tnq,np0

q,p0 is the transmission coefficient of electrons to

the nqth channel in the qth lead when the electron is injected
from the np0

th channel in the p0th lead. We have considered
an electron injected from the lead 1 so that p0=1. As a check
of the method, we set B=0 and calculate the transmission
coefficients �Fig. 3�a��. The transmission coefficients for the
left and right directions, T41 and T21, are identical. That is
because of the symmetry when there is no magnetic field.
The results show that the magnetic-field RMT correctly re-
covers the zero-field result. Note that the forward transmis-
sion T31 is always higher than the left and right transmission
when there is no magnetic field. That means, even though the
current source drives electrons from lead 1 to lead 4, elec-
trons are more likely to travel ballistically to lead 3 �the
forward lead�. If electrons moved diffusively, they would
pile up equally in the leads 2 and 4. In contrast, ballistic
electrons will accumulate in the forward lead giving a nega-
tive voltage V23, which results in a negative bend resistance.

As the magnetic field is increased, electrons experience
the Lorentz force and tend to deflect to the lead 2. The trans-
mission coefficient T21 is higher than the transmission coef-
ficient T41 as we observe from the transmission coefficients
at B=6 and B=12 �Figs. 3�b� and 3�d��. Also, the transmis-
sion coefficients at B=6 and B=−6 �Figs. 3�b� and 3�c��
show that the direction of the electron path changes as you
change the direction of the magnetic field, which again dem-
onstrates the accuracy of the calculation. Knowing the trans-
mission amplitudes, we can calculate scattering-wave func-
tion. We have plotted the probability density of a positively
charged particle traveling in the four-terminal junction at en-
ergy �=25. We show �Fig. 4� both the zero-field scattering-
wave function and the wave function at B=10. We can see
the symmetry of the scattering wave function when there is
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no magnetic field and how the electron deflects towards the
side arm when there is a magnetic field perpendicular to the
system.

B. Calculating the magnetotransport properties

In the previous section we calculated the transmission co-
efficients of electrons injected to a four-terminal device at

different energies. Now we use these transmission coeffi-
cients to calculate the transport properties according to the
LB theory. At zero temperature, only the transmission coef-
ficients at the Fermi energy contribute to the transport prop-
erties. The Fermi energy is represented by a specific value of
the dimensionless energy on the horizontal axis of graphs in
Fig. 3. This dimensionless energy is measured relative to the

FIG. 3. Transmission coefficients for the electron injected to the four-terminal “cross” junction device �Fig. 1� for �a� B=0, �b� B=6, �c�
B=−6, and �d� B=12. The solid line is T31, the dotted line is T21, and the dashed line is T41.

FIG. 4. �Color online� The probability density of a positively charged particle injected into the four-terminal “cross” junction. �a� is the
probability density of the particle when there is no magnetic field and �b� is the probability density when the applied perpendicular magnetic
field B=w0

2 / lB
2 =10. Both the probabilities are calculated when the scattering energy, �=25. Note that the sidearms have similar probabilities

for the left figure, but not for the right figure.
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ground-state energy of the input lead, i.e., ��−�0� where �
=E /E0 and �0=�2 /2, ground-state energy in the input lead in
the dimensionless units. Since the energy unit E0 depends on
the width of the input lead wp0

, for a given Fermi energy, the
energies at different points on the horizontal axis represent
devices with different widths wp0

. The Fermi energy of a
system is set by the electron concentration, n, of the system
so that

EF =
��2

m* n , �29�

where m* is the effective mass of electrons in the device.
Therefore, we can convert the values of the dimensionless
energy in the transmission coefficient graphs to the device
width according to

�F
�2

m*wp0

2 =
��2

m* n , �30�

where �F is the Fermi energy in dimensionless units. Given
the electron concentration of the sample, we can convert the
dimensionless Fermi energy �F into the width of the device
as

wp0
=� �F

�n
. �31�

Table I shows the conversion of the Fermi energies that
we have considered in the RB calculation �Fig. 5� to the
width of the device for an electron concentration n=1.90
�1011 cm−2.

Knowing the transmission coefficients at the Fermi en-
ergy, we calculate the bend resistance RB according to Eq. �1�
at different intensities of the external magnetic field. Also
note that, in the calculation, we measure the magnetic field in
dimensionless units, B=wp0

2 / lB
2 . For a given wp0

, we can con-
vert the units of the magnetic field to Tesla according to this
relation. We calculate the RB at different dimensionless
Fermi energies �for devices with different widths� and the
result is shown in Fig. 5. The Fermi energy decreases means
the width of the device decreases as shown in the Table I.

Our calculations show that the bend resistance is negative
at zero magnetic field, which qualitatively agrees with the
experimental observation made by Goel et al.,4 and the width
of the peak is comparable to experiment. However, the de-

tails of their device geometry is sufficiently different from
ours that it is hard to compare the results quantitatively. Our
calculations also show that the variation of the bend resis-
tance with magnetic field is not monotonic with the width of
the sample. In order to clarify this point, we plot the bend
resistance RB as a function of sample width in Fig. 6.

The bend resistance depends on ratios of transmission co-
efficients at the Fermi energy, and the graphs of Fig. 3 show
that these ratios do not have a simple dependence on energy.
In particular, the transmission coefficients vary rapidly as we
pass through a threshold. If the width of the sample is such
that the Fermi energy lies close to a threshold energy, then
the difference between T31 and T21 is large and we will get a
large negative bend resistance. However, if the Fermi energy
lies away from a threshhold energy, this difference decreases,
lowering the RB. It is not just the width of the sample matters

TABLE I. Dimensionless Fermi energy values �i.e., energy mea-
sured in units of E0� are converted into corresponding widths for a
sample with the electron concentration n=1.90�1011 cm−2.

Dimensionless
Fermi energy

Width
�nm�

30 71

35 76

40 82

50 91

60 100

FIG. 5. The bend resistance RB of a four-terminal “cross”-
junction device as calculated using the magnetic field R-matrix
theory and LB formula. We have calculated the bend resistance at
different Fermi energies �F equal to 30 �solid�, 35 �dashed�, 40
�dotted�, 50 �short dashed�, and 60 �dashed-dotted�. These different
lines correspond to different device sizes as shown in Table I.

FIG. 6. The bend resistance RB of a four-terminal “cross”-
junction device is calculated at B=0 for different values of Fermi
energies, i.e., different device sizes for a given electron
concentration.
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for the result, but the position of the Fermi energy with re-
spect to the threshold energies. These issues have yet to be
explored by experiment.

Experiments 4 have reported RB5 k� when the width of
the sample is equal to 0.2 �m. According to our results, this
high bend resistance can be seen only for a narrower device.
However, the reported width is the lithographic width, and
the actual channel width can be much lower due to depletion.
This is supported by the fact that many devices were found
to be close to the threshold of pinchoff.

IV. DISCUSSION AND CONCLUSION

It is useful to contrast our quantum-mechanical results
with a semiclassical diffusive model. Since the actual width
of a quantum wire can easily be much smaller than its litho-
graphic width, it can be unclear whether or not a device is
dominated by quantum-mechanical effects. Hallmarks of the
quantum approach include: nonmonotonic dependence of the
bend resistance on the device width �or Fermi energy�, ex-
treme sensitivity to device geometry, and damped oscilla-
tions in the bend resistance as a function of magnetic field.
Diffusive models,5 by contrast, give monotonic behavior as a
function of device width, general insensitivity to minor
changes in device geometry, and a nonoscillatory behavior in
the bend resistance as a function of magnetic field.

Experiments in semiconductor systems that are well in the
semiclassical limit display a smooth dependence on device
size.5 Recent experiments by Goel et al.,4 which are closer to
the quantum-mechanical limit, display damped oscillations
in the bend resistance as a function of field. As device sizes
shrink, the quantum approach may be more relevant, espe-
cially in systems with a small effective mass.

In conclusion, we have improved upon the existing zero-
field R-matrix theory to calculate the transmission coeffi-
cients of electrons in two-dimensional device in the presence
of an external magnetic field. Using the magnetic field RMT,
we show how to calculate the magnetotransport properties of
a four-terminal device in a fully quantum-mechanical fash-
ion.

R-matrix theory provides a fast way to analyze these de-
vices. However, its true advantage comes in analyzing many-
electron systems. Future work will involve applying the for-
malism to calculating the magnetoresistance of molecular
wire systems.
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APPENDIX: ZERO-FIELD R-MATRIX THEORY FOR A 2D
SYSTEM

We consider the two-dimensional system in Fig. 7. This
system has a central region A connected to N external re-

gions or “leads.” The leads and the interior region meet at a
set of boundary mathematical surfaces we denote by
s1 ,s2 , . . . ,sN. We treat the boundaries between the shaded
and unshaded regions as “hard walls” �infinite potential� so
electron wave functions are nonzero only in the shaded re-
gions. The surfaces, s1 ,s2 , . . . ,sN are called the “soft bound-
aries.” We denote the input lead by p0 and all other leads by
positive integer p. We measure all distances in units of wp0
and energies in terms of E0��2 /m*wp0

2 . We seek an analytic
solution for the amplitudes of outgoing states in the leads
when only one incoming state is occupied.

The time-independent Schrodinger equation for the scat-
tering function is

�Ĥ − �����,p0,np0
� = 0, �A1�

where ���,p0,np0
� represents the state of an electron with total

energy � incident in input-lead subband np0
. Note that

��E,p0,np0
� is well defined in all leads. In a finite region, the

Hamiltonian Ĥ is not Hermitian. We can, in general, produce

a Hermitian operator by adding to Ĥ the so-called Bloch

operator L̂1.18 Usually in zero-field RMT, we use LB for the
Bloch operator, however we save the symbol B for the mag-
netic field in this paper. We denote the eigenfunctions of the
sum of these operators in the interior region by � j� and write
the so-called Bloch eigenvalue equation as

�Ĥ + L̂1�� j� = � j� j� . �A2�

Inserting the Bloch operator into the Schrödinger equation
we get

�Ĥ + L̂1 − �����,p0,np0
� = L̂1���,p0,np0

� . �A3�

For a free-particle system, the Bloch operator takes the form

L1 = �
p

1

2
��x − sP��� · n̂ , �A4�

where n̂ is the perpendicular norm to the boundary. We now
expand the scattering-wave function ���,p0,np0

� in the set of

orthonormal Bloch eigenfunctions

FIG. 7. Schematic of a two-dimensional device for the present
scattering calculations. The mathematical surfaces s1 ,s2 , . . . ,sN

separate the interior region A from the N leads, but do not corre-
spond to physical interfaces.
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���,p0,np0
� = �

j

C j� j� . �A5�

Inserting this expansion into the Schrödinger equation and
using the properties of the Bloch eigenfunctions, we can
write the scattering function on the qth lead as

���,p0,np0
�xq,yq�� = R��xq,yq;xp,yp�L1���,p0,np0

� , �A6�

where

R��xq,yq;xp,yp� = �
j

� j�xq,yq��� j�xp,yp��
� j − �

. �A7�

This expansion is valid throughout the interior region A
and on its surface �see Fig. 7�.

We now apply this expansion of the scattering state on
each boundary sq. At each such boundary we can expand the
scattering function in either lead eigenfunctions or Bloch
eigenfunctions in the interior region. To be specific, we in-
troduce a local Cartesian coordinate system for each lead: xq
and yq, the longitudinal and transverse coordinates of the
nqth lead, respectively. We choose xq=0 on each boundary.
�One can easily choose any orthonormal coordinate system,
mutatis mutandis.� Each lead eigenfunction is then a product
of a plane wave in the xq direction and a transverse bound-
state eigenfunction ��q,nq

�yq��. The scattering-wave function
in the nqth lead therefore becomes

���,p0,np0
�xp,yp�� = e−ikp0,np0

xp0�p0,np0
�yp0

��p,p0

+ �
q,nq=1

N

�nq,np0

q,p0 ���eikq,nq
xq�q,nq

�yq��p,q,

�A8�

where kq,nq
and �nq,np0

q,p0 are the wave vector and scattering

amplitude for the channel with quantum number nq in lead q.
Finally, �p,q is the Kronecker delta function, which ensures
that each wave function is defined only in one lead. We can
express energy conservation in lead q as �=kq,nq

2 +�q,nq
,

where �q,nq
is the energy associated with the nqth subband in

the qth lead. We use this relation to determine the wave
vector kq,nq

.
After some algebra we get a set of linear algebraic equa-

tions that we can solve for the transmission amplitudes;

i�
p,np

�np,np0

p,p0 ���kp,np
M��q,nq,p,np� − �nq,np0

q,p0

= �q,p0
�nq,np0

+ ikp0,np0
M��q,nq,p0,np0

� . �A9�

In writing these equations we have defined

M��q,nq,p,np� =
1

2
�

yp

�
yq

�q,nq

* �yq�R��yq,yp��p,np
�yp�dyqdyp.

�A10�

Finally, the R matrix is given by

R��,yp,yq� = �
j

 j
*�xq = 0,yq� j�xp = 0,yp�

� j − �
. �A11�

This equation is general in that we can easily adapt it to any
number of leads and to different choices of input lead.

*Electronic address: thushari@ou.edu
1 O. Olendski and L. Mikhailovska, Phys. Rev. B 72, 235314

�2005�.
2 F. M. Peeters, Phys. Rev. Lett. 61, 589 �1987�.
3 K. J. Goldammer, S. J. Chung, W. K. Liu, M. B. Santos, J. L.

Hicks, S. Raymond, and S. Q. Murphy, J. Cryst. Growth, 201/
202, 753 �1999�.

4 N. Goel, S. J. Chung, M. B. Santos, K. Suzuki, S. Miyashita, and
Y. Hirayama, Physica E �Amsterdam� 21, 761 �2004�.

5 S. Tarucha, T. Saku, Y. Hirayama, and Y. Horikoshi, Phys. Rev. B
45, 13465 �1992�.

6 S. Datta, Electronic Transport Properties of Mesoscopic Systems
�Cambridge University Press, Cambridge, England, 1995�.

7 Hong Chen, J. J. Heremans, J. A. Peters, N. Goel, S. J. Chung,
and M. B. Santos, Appl. Phys. Lett. 84, 5380 �2004�.

8 R. Landauer, IBM J. Res. Dev. 3, 223 �1957�.
9 Y. Hirayama, T. Saku, S. Tarucha, and Y. Horikoshi, Appl. Phys.

Lett. 58, 2672 �1991�.

10 There is a factor of N �number of open channels� difference be-
tween Ref. 9 and Ref. 6 and we have used the equation from
Ref. 6.

11 E. P. Wigner and I. Eisenbud, Phys. Rev. 72, 29 �1947�.
12 Thushari Jayasekera, Michael A. Morrison, and Kieran Mullen

�unpublished�.
13 Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe, Quan-

tum Mechanics �John Wiley and Sons, New York, 1977�.
14 H. Tamura and T. Ando, Phys. Rev. B 44, 1792 �1991�.
15 R. L. Schult, H. W. Wyld, and D. G. Ravenhall, Phys. Rev. B 41,

12760 �1990�.
16 C. Bloch, Nucl. Phys. 4, 503 �1957�.
17 In the atomic physics literature this approach is referred to as

using a “variational basis,” even though we are not optimizing
the basis respect to �. We preserve the terminology used in the
literature.

18 R. K. Nesbet, S. Mazevet, and M. A. Morrison, Phys. Rev. A 64,
034702 �2001�.

R-MATRIX THEORY FOR MAGNETOTRANSPORT… PHYSICAL REVIEW B 74, 235308 �2006�

235308-9


